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A model is presented to describe the creep behaviour of glassy polymers below the glass 
transition temperature. It consists of a Hookean spring in series with a non-Newtonian 
dashpot having an entropy spring in parallel. The shape of the response of this spring is 
deduced from a master curve, giving the extension as a function of logarithm of time, 
built from creep data, reported here and obtained on polycarbonate over a wide range of 
times and temperatures. The model takes into account a number of aspects of creep 
behaviour and predicts a threshold stress beneath which delayed yielding no longer 
occurs. Torsional creep data, obtained on polyvinylchloride by Mallon and Benham are 
found to be in excellent agreement with the proposed model. 

1. Introduction 
Our intention in this paper is to give an interpret- 
ation of  the mechanism of  creep of glassy 
polymers, valid in the linear as well as in the non- 
linear region of viscoelasticity over a wide range of  
temperatures. The proposed creep mechanism is 
based on tensile creep data at various temperatures 
obtained on polycarbonate (PC), which complete 
the study of  Mindel and Brown [1],  restricted to 
high stresses at room temperature.  The investi- 
gated range is located below and not  too close to 
the glass temperature Tg and therefore differs from 
the one considered by Matz et  al. [2],  who have 
given an interpretat ion of  the creep behaviour of  
PC near Tg. Careful examination of  our data has 
led us to ascertain that: 

(a) the value of  eo, the instantaneously 
measured strain upon loading at small stresses, is 
independent of temperature in the range con- 
sidered ( - -20 to 80 ~ C). (This is in agreement with 
the data of Yannas and Lunn [3] ); 

(b) the shape of the curve giving the extension 
as a function of  log t (t denoting time) is the same 
at any level of applied stress o or temperature T. 

The model proposed here was inspired by that 
of  Haward and Thackray [4] and is shown to be 
capable of  accounting for these experimental facts 
and for a number of different aspects of  creep 
behaviour given in the literature, e.g. : 

(a) some entropy elasticity is involved and 
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creep strain is not completely recoverable [1, 5] ; 
(b) the creep-rate depends on the following 

variables: T, o /T ,  and the total strain, by means of 
separate functions of  these variables [1,5]  ; 

(c) a threshold value of  the applied stress exists 
beneath which delayed yielding no more occurs in 
glassy polymers [2] ; 

(d) the level of the stress related to what is 
often called "the transition between linear and 
non-linear viscoelasticity" decreases as the tem- 
perature approaches the vicinity of T e [3].  

Mallon and Benham's data [6] on torsional 
creep of  polyvinylchloride (PVC) were used to test 
the proposed model. 

2. Experimental 
The material and the specimens were the same as 
those used in previous investigations related to 
tension, tensile creep and impact tests [7, 8].  
Tensile creep tests were performed under dead- 
weight loading inside an environmental chamber 
provided with windows and capable of  maintaining 
a constant temperature to within + 0.5 ~ C. 

The extension was obtained with a dial gauge, a 
method which allows one to measure accurately 
the extension variations with time over a wide 
range of  times and temperatures, but which is not  
accurate enough to determine the absolute value 
of the extension. Photographs of  the dial gauges 
were taken automatically at times varying in a 
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Figure 1 A plot o f  the applied stress as a funct ion  o f  the  
ins tantaneous  strain upon  loading in the  linear range and 
at various tempera tures .  

geometric progression (base 2), from tl = 4sec 
after the beginning of  loading. 

Determination of  the value of  the extension el 
at h was made by considering that loading is only 
a tensile test at a rather high speed. This speed is 
estimated at 5 cmmin -~. Tensile tests were per- 
formed at this speed on analogous specimens 
mounted in the same grips and at the same tem- 
peratures as in the creep tests, e I is deduced from 
these tensile curves (corrected for the deformation 
of  the tensile machine) as a function of  a and tem- 
perature T. The results are in agreement with 
values of  el derived from the proposed model, as 
will be shown in Section 3.5. As the extension 
measurements are made by grip separation, both 
in creep and tensile tests, strain within the gauge 
length lo must be calculated from: 

e 
e = - -  (1) 

klo 

where e denotes the extension at a given time and 
k a correction factor estimated at 1.52. 

For creep tests performed at small stresses 
(linear behaviour) from --20 to 40 ~ C, the instan- 
taneous extension upon loading, eo, was recorded 
using strain gauge extensometers of  the Baldwin 
type. For tests conducted at higher temperatures, 
eo was measured using a cathetometer by 
evaluating the increase o f  distance between two 
marks painted on the specimen (in this case the 
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test-pieces consisted of  strips 25 mm wide, 2 m m  
thick, machined to a 200 mm gauge length). Above 
room temperature, every test was performed after 
the specimen had remained at the required tem- 
perature 16h. All stresses considered in this paper 
are engineering stresses. 

3. Results 
3.1. Instantaneous strains eo upon loading 

at small stresses 
At temperatures varying from --20 to 80 ~ C, the 
applied stress o is plotted versus e0 in Fig. 1, where 
it can be seen that a proportional dependence may 
be assumed. The following formula may be 
adopted for a first approximation: 

= s (2 )  

where Eo denotes an elasticity modulus which is 
independent of  T. E0 was found equal to 280 
kg mm -2 . 

3 .2 .  Va r i a t i on  o f  t he  e x t e n s i o n  e w i th  log t 
Extension e was plotted against log t for each 
creep test. The shape of  these curves suggested 
that they may be superimposed. 

3.3. Master curve 
To generate a master curve from our data, we have 
adopted the following procedure. A given curve 
e = f ( l o g  t) is taken as reference (we chose the 
curve related to o = 4.69 kg mm -2 at 40 ~ C). Each 
e = f ( l o g  t) curve is then brought into coincidence 
with the reference curve without paying attention 
to differences between the absolute value of  the 
total extension, but considering the horizontal 
shift factors that are necessary to make the curves 
coincide. A master curve is thus obtained which 
accurately fits the data, as can be seen from Figs. 
2 and 3 where the data are plotted, respectively 
related to 40 ~ C and various temperatures. 

It should be pointed out that three curves 
related to T = 80 ~ C and low values of  o/T (lower 
than 10 -2 kgmm -2 K -x) are not superposable in 
their entirity; only the parts corresponding to 
small times coincide. This range of  experimental 
conditions must, therefore, be considered as the 
limit of  applicability of  the proposed model. 

3.4. Variat ion of the shift  factor as a 
funct ion of a/T 

Let tr be a given time on the reierence curve 
chosen equal to 100min and t the corresponding 
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Figure 3 Examples of the coincidence of the creep data obtained at various temperatures with the master curve given in 
Fig. 2. 

time on a partial curve (times are said to corres- 
pond when related to superposed data), a/T (the 
ratio of  stress to absolute temperature)  is plot ted 
as a function of  log (tr/t) in Fig. 4. Through the 
data we have drawn a set of  parallel straight lines 
(one straight line for each temperature)  having a 
slope equal to 2.3 x A.  

The horizontal  distance s between two straight 

lines related to temperatures T1 and T2 res- 
pectively is calculated from the following relation: 

2 x  2 . 3 x  Q 

s = ( l / T 1 ) - -  (l/T2)" (3) 

The values of  A and Q (recalled in Table I) are 
taken from a previous note [8] ,  showing that the 
tensile yield behaviour of  PC in tension as well as 
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Figure 4 A plot of the ratio of the applied stress to temperature against the shift related to the superposition of the data 
on the master curve. The set of parallel straight lines is calculated from Equation 3 and Table I (t r is a reference time 

3.5 Evaluat ion o f  e l ,  the  strain at t l = 
4 sec fo r  each creep test  

The master curve admits a horizontal  asymptote at 
short times intersecting the vertical axis at the 
extension eo. Let 

Ael = el - -eo (6) 

denote the difference in extension, measured on 
the master curve between a point,  related to a 

given value of  a/T  and h = 4 sec and the level of  
the asymptote.  Therefore, Equations 1, 2 and 6 
lead to Equation 7 which must be used to obtain 
the accurate value of  e~" 

o Ael 
e l  = - -  + -  ( 7 )  

Eo klo 

where Ael depends on a/T. 

related to the master curve and chosen equal to 100 min). 

in creep, may be described by an Eyring type 
equation: 

a A ( ln  2 C~ +RQ_T), (4) 
T 

where Q denotes the activation energy of  the yield 
process, ~ is the strain-rate, A and C are constants, 
and R is the universal gas content.  

In the previous note [8],  the yield point  was 
chosen as the inflexion of  the creep curve (i.e. the 
curve giving e versus t). On a plot  giving e versus 
log t, the yield point  is located at Y (Fig. 7). From 

Equation 4, the non-Newtonian viscosity at this 
point  is expressed by:  

r/ = 2 Co exp ~ -  . (5) 

The satisfactory fit of  the data to Equation 4 
suggests that  ~ may not  only represent the 
viscosity at the yield point  but  also at any point  of  
the creep curve. 

TABLE I Constants related to PC 

At a given temperature,  el thus evaluated as a 
function of  a, may be compared to the total  strain 
from a tensile test conducted at 5 cm min -1 at the 

E o A Q C %IT 
(kg ram-2 ) (kg mm -~ K -1 ) (kcal mol -t ) (sec) (kg mm -2 K -l ) 

280 3.96 10 4 85 1.4 10 -43 7 • 10 -3 
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Figure 5 Comparison of el, the total strain at 4 sec, 
evaluated from tensile curves and calculated from 
Equation 7. 

same temperature. Examples at 40 and 60~ are 
given in Fig. 5 where a good agreement between 
both types of  estimation may be verified, 
indicating that the superposition principle and 
Equation 7 may be considered valid. This fact 
implies that the value of  the total strain related 
to a given point of  the creep curve depends on o 
and o/T. In this respect our observations are not 
in agreement with those of  Mindel and Brown [1] 
who consider that the strain corresponding to the 
minimum of  the creep rate (i.e. what we have 
defined as the yield point), is a constant. It must, 
however, be pointed out that the value of the 
stress related to their tests did not vary more 

than 5%, and that those tests were all conducted 
at room temperature. 

3. P r o p o s e d  m o d e l  
We propose a rheological model based on our 
experimental results which is intended to provide 
the formalism of  the creep behaviour of  glassy 
polymers. We have sought the simplest system 
where: 

(a) the same viscous process is responsible for 
the time dependency of the creep strain, at any 
value of  the applied stress or the temperature 
(with T never greater than 353 K); 

(b) some entropy elasticity is involved in creep 
strain (as already suggested by Sherby and Dorn 
[5] and Mindel and Brown [1] which absorbs a 
part of  the applied stress and accounts for the 
strain-rate variation in a creep test; 

(c) the variation of  eo is proportional to the 
applied stress o. 

/ 
11 

Figure 6 Simple three-element system representing the 
proposed model, r/ denotes an Eyring dashpot and E an 
entropy spring. 

The simple three-element model of Fig. 6, 
involving a Hookean spring E0, a non-Newtonian 
dashpot ~/, an entropy non-Hookean spring E, ful- 
fils these conditions. This model differs from the 
one proposed by Haward and Thackray [4] by the 
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Figure 7 Response of the entropy spring calculated from Equation 8 and the master curve; a dashed parabola is given 
for comparison. 
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nature of the spring E (they used as E a rubber 
elasticity spring which gives a good model to 
describe isothermal stress-strain curves at large 
plastic deformations but fails to explain creep 
behaviour at extensions of less than 5%, which is 
the range of strains we have considered). 

Let us suppose that up to a time t' (Fig. 7) 
related to the reference test, the response of the 
entropy spring is still Hookean with a modulus 
equal to E proportional to the absolute tem- 
perature. In this case, the response of the model is 
given by: 

e--eo = in t+InAT AT RT ln2 ) 
(8) 

f o r  

and e denoting the total strain at time t. If  log t' 
and log t* are respectively taken equal to 0 and 
--5 (see Fig. 7) and the value of E/T may be 
deduced from the master curve. For times larger 
than t '  the response of the entropy modulus is no 
longer Hookean; let us express it by: 

al = / ( e -  %), 

whereas 

will give the response of the dashpot r/. 
According to our model, we can write: 

O 1 = 0 - - 0  2 

= o - - A T l n 2 C - A T l n ( d ( e - % ) ) - A  Q 

(11) 
which may be written: 

de 
- -  log ~ = log t - -  log d log t 

_ f ( e - -%)  o Q 
- -  + + log 2C 

2.3AT 2.3AT 2.3RT 
(12) 

At a given temperature T, f(e--eo) may be 
deduced from the master curve (reduced to T) 
using Equation 11 ; such a construction is given in 
Fig. 7. A dashed parabola is drawn on the same 
graph for comparison, indicating that the response 
of the entropy spring may perhaps be of this type. 

Such a result is similar to that of Mindel and 
Brown [1] who presented the variation of the 
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logarithm of the creep-rate as a function of the 
logarithm of strain, a type of plot which may also 
be expressed by Equation 12. Up to a strain equal 
to about 8% in tension and 11% in compression, 
parabolas are a good approximation of these 
curves. 

A parabolic response of the entropy spring 
could, perhaps, be explained by considering that 
the polymer contains a given number of elements 
capable of being deformed elastically with a con- 
stant modulus E and a given number of elements 
which will flow with a viscosity 7, and that, as a 
function of time, the former will diminish and the 
last increase. The expression of strain derived from 
this assumption is given in the Appendix. 

5. T e s t i n g  o f  t h e  m o d e l  
Mallon and Benham [6] have performed accurate 
measurements in simple shear creep on PVC at 
21 ~ C. They presented a family of curves related to 
various stresses r and giving the total strain 3' 
versus log t. The curve corresponding to the lowest 
stress admits a horizontal asymptote; from the 
strain level of this, we have calculated the value of 
Go reported in Table II. For each curve, 3'o = T/Go 
is evaluated. The master curve is then built by the 
superposition of curves giving 3' -- % as a function 
of log t. This master curve, reduced to r = 0.689 
kgmm -2 , is represented in Fig. 8 together with the 
plot of r/T versus log (tr/t) (where t r = 10 a sec). It 
can be seen from the graph that the data are nicely 
superposable with a linear dependence of r on the 

",5 -z  -z -1 

i_ a'o */, 
5" pVC r 

T : 2 1 ~  

2 

I 

I~ tog t 

F&~ure 8 Master curve, reduced to r = 0.689kgmm -~, 
obtained from superposition of the data of Mallon and 
Benham [6] on PVC; and plot of r/T versus the shift 
f a c t o r  o f  t h e  d a t a  ( t  r = 10  3 sec) .  
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Figure 9 Response of the entropy spring calculated from 
the master curve of Fig. 8; a dashed parabola is given for 
comparison. 

shift factor and, therefore, that they constitute a 
convincing test for the model. The response of  the 
entropy spring compared to a dashed parabola is 
given in Fig. 9. 

Let 2.3 A r denote the slope of  the straight line 
representing ~/t versus log (tr/t). The constant A, 
appearing in Equation 4, may be evaluated from 
Ar using the following equation, derived from a 
yield criterion previously established [9, 10] and 
based on the Eyring theory: 

X/3(1 + a)Ar 
A - (13) 

2a 

where a denotes the ratio of  the yield stress in 
compression to the yield stress in tension. Using a 
value of  this ratio equal to 1.3, calculated for PVC 
[10] as a function of  the engineering yield 
stresses, the constant A, evaluated from Equation 
13, is found to agree with the value calculated 
from tensile experiments [7];  both are given in 
Table II. 

The activation energy Q cannot be known from 
the data of  Mallon and Benham which are all 
obtained at room temperature; we have, therefore, 
taken Q = 7 0 . 5 k c a l m o 1 - 1  from our previous 
results [7] in order to evaluate the constant C 
quoted in Table II. 

TABLE II Constants related to PVC 

6. Discussion 
An important consequence of the proposed model 
is that deformation at the yield point has merely 
the appearance of  purely viscous flow. It entails, in 
fact, an entropy elastic component requiring a 
constant part %/T of the ratio o/T. This influences 
the value of  the constant C which was previously 
deduced from a graph giving o/r versus tog ey @y 
denoting the strain-rate at yield). According to our 
model, C must be calculated from a ( a -  ae)/T 
versus log @ plot, or from the measured value of  
t* using Equation 8; both methods give a new 
value of  C quoted in Tables I and II. 

The proposed model implies a threshold value 
of  o/T beneath which yielding can no longer 
occur. The critical value %/T found for PVC 
(Table II) lies near the level at which, for this 
material, the tensile yield stress becomes inde- 
pendent of  strain-rate at 50 and 60~ [11].  This 
result is satisfactory, as it has been shown 
previously that creep and tensile yield behaviours 
are similar [8]. From our data on PC (Table I), we 
have found a value of  oe/T which agrees on the 
one hand, with that derived from the results of  
Matzetal. [2] at 90 ~ C: 

o 
- 8.3 x 10 -3 kgmm -2 K -a 

T 

for which the delay time becomes infinitely large; 
and, on the other hand, with the level of  o/T at 
which the tensile yield stress becomes independent 
of  strain-rate [11 ]. 

In the case of  PC, however, we must point out, 
that at 80 ~ C for values of  o/T lower than 9.5 10 -3 
kg mm 2 K -a , the creep curves giving e versus log t 
cease to be superposable up to the yield point. 
This may be due to some rearrangements in the 
material occurring when this polymer is main- 
tained at 80~ for long times and which are 
reflected in the yielding properties [12].  We plan 
to investigate this point further, but the important 

ao 
(kg ram- = ) 

120 

A O 
(kg mm -= K -1 ) (kcal mo1-1 ) 

7.4 X 10 -4 70.5 
(calculated from (tensile 
Equation 13 - data [7] ) 
torsional creep data 
[6]). 
7 X 10 -4 
(tensile data [7] ) 

c %/T 
(sec) ('kg mm -2 K -1 ) 

3.4 X 10 -41 7 X 10 -3 

1785 



thing is that the model predicts the existence of a 
threshold stress depending on T and that the value 
found for it is quite plausible. 

From Equation 12, an expression of the creep- 
rate may be deduced, which has the class!cal form 
[1, s]- 

= Jq(e)'f2 . f3(r)  (14) 

where fl (e), f2 (o/T), f3(T) are separate functions 
of the variables e, o/T and T, 

Another consequence of the model is that 
perfect linear viscoelasticity only exists for 
extremely low values of the applied stress implying 
a Newtonian behaviour of the dashpot 71. At short 
times, in a creep test, if viscoelasticity appears to 
be linear, it is only because the major part of the 
deformation is related to the Hookean spring. 

The decrease, as a function of T, of the stress 
threshold above which creep deviates from linear 
behaviour by more than a given value [3] may 
easily be explained by the model: in isochronous 
experiments at various temperatures, the stress 
required to produce a given value of the extension 
of the dashpot, diminishes when T increases. 

It has been shown previously [13] that the 
effect of deformation prior to yielding must be 
taken into account in the calculation of the true 
tensile yield stress. This is equally valid for the 
stress related to any value of the extension of the 
dashpot [ t4] .  Therefore, the engineering stress o, 
must be replaced by a(1 + e) where e is the value 
of the total strain at a given time t. This correction 
has not been considered here, because we wished 
t o  compare our results with previous data related 
to engineering stresses, but is easily done if 
desired. It hardly affects the value of Q and C and 
gives a value of A which is no more than 6% higher 
than the one given in Table I. 

The shape of the response of the entropy 
spring, graphically given in Figs. 7 and 9, shows 
that creep extensions exceeding the value related 
to the vertex of the curve may not be entirely 
recoverable. This remark indicates that the model 
takes into account a persistent component of the 
strain, as observed by Mindel and Brown [1]. 

7. Conclusions 
The proposed model, although very simple, gives a 
satisfactory fit to the data, over a wide range of 
times and temperatures. Valid in the non-linear as 
well as in the linear region of viscoelasticity, it 
implies a stress threshold beneath which delayed 
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yielding can no more occur. 
This model considers that the viscous part of 

the creep extension may be represented by a 
single non-Newtonian dashpot, obeying an Eyring- 
type equation. As such an equation may easily be 
expressed as a function of a number of different 
cases of testing conditions, the applicability of the 
model is not restricted to creep, but can be 
enlarged to other types of tests. 

The theoretical considerations presented to 
explain the shape of the response of the entropy 
spring, are only suggestions, but may perhaps con- 
stitute a first step towards understanding non- 
linear behaviour of glassy polymers. 

Appendix 
A parabolic response of the entropy spring may 
derive from the following assumption. 

Let us consider that after loading at t = 0, the 
material is composed of purely elastic deformation 
units related to a constant modulus E (E being 
proportional to T); and let us assume that, as a 
function of time, a fraction a of these elastic units 
transforms into flow units having a non-Newtonian 
viscosity r/. Moreover, let us stipulate that creep 
consists of increasing the elastic extension of the 
remaining ( 1 - - a )  fraction of elastic units, 
following the rule: 

al = E(1 -- a)(e -- e0). 

Now, if Fo denotes the elementary shear related to 
the flow process, one obtains: 

e - eo = KaPo 

where K is a constant. Therefore, 

oa = E l ( e - - c o )  (e--e~ j.  

This parabolic response of the entropy spring 
together with the model leads to the following 
expression of the strain-rate: 

log~ - o - E(e -- eo ) + ~ o  (e- -co)  2 

Q 
log 2 C 

2.3 R T  

which may explain Equatio n 1 2. 
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